1,033 research outputs found

    Reply to the "Comment on 'Piezonuclear decay of thorium' [Phys. Lett. A 373 (2009) 1956]" [Phys. Lett. A 373 (2009) 3795] by G. Ericsson et al

    Full text link
    In a paper appearing in this issue of Physics Letters A, Ericsson et al. raise some critical comments on the experiment [F. Cardone, R. Mignani, A. Petrucci, Phys. Lett. A 373 (2009) 1956] we carried out by cavitating a solution of thorium-228, which evidenced its anomalous decay behaviour, thus confirming the results previously obtained by Urutskoev et al. by explosion of titanium foils in solutions. In this Letter, we reply to these comments. In our opinion, the main shortcomings of the criticism by the Swedish authors are due to their omitting of inserting our experiment in the wider research stream of piezonuclear reactions, and to the statistical analysis they used, which does not comply with the rules generally accepted for samples with small numbers. However, apart from any possible theoretical speculation, there is the basic fact that two different experiments (ours and that by Urutskoev et al.), carried out independently and by different means, highlight an analogous anomaly in the decay of thorium subjected to pressure waves. Such a convergence of results shows that it is worth to further carry on experimental investigations, in order to get either a confirmation or a disproof of the induced-pressure anomalous behaviour of radioactive nuclides even different from thorium.Comment: 8 pages, 1 figur

    Possible Experimental Evidence for Violation of Standard Electrodynamics, de Broglie Pilot Wave and Spacetime Deformation

    Full text link
    We report and discuss the results of double-slit-like experiments in the infrared range, which evidence an anomalous behaviour of photon systems under particular (energy and space) constraints. These outcomes apparently disagree both with standard quantum mechanics (Copenhagen interpretation) and with classical and quantum electrodynamics. Possible interpretations can be given in terms of either the existence of de Broglie-Bohm pilot waves associated to photons, and/or the breakdown of local Lorentz invariance (LLI). We put forward an intriguing hypothesis about the possible connection between these seemingly unrelated points of view by assuming that the pilot wave of a photon is, in the framework of LLI breakdown, a local deformation of the flat minkowskian spacetime.Comment: 15 pages, 6 figures, presented at CASYS'09 - International Conference on COMPUTING ANTICIPATORY SYSTEMS - HEC Management School - University of Liege, LIEGE, Belgium, August 3-8, 2009. The paper was peer reviewed as explicitely stated on page x in the AIP CONFERENCE PROCEEDINGS 1303 - Computing Anticipatory Systems - CASYS'09 Ninth International Conference, Li\`ege Belgium, August 3-8, 200
    • …
    corecore